S HERYI ANS CODING S CHOOL

PRESENTS

Bible,
J8vascript

WHOEVER FOLLOWS THIS BLINDLY
ACHIEVES THE GREATINESS AND
UNBEATABLE WISDOM IN JAVASCRIPT.

the book by Harsh Sharma, Sheryians Coding School

Interview bible

Var Let And Const
== And =-_—=
First Class Functions

Constructor Functions

New Keyword

iife
Map Filter, Reduce, Sort

Object In Js

Accessing Objects Properties Two Ways
Prototype & Prototypal Inheritance
Strict Mode JS

Nin Js

This Keyword

Call, Apply, Bind

Pure And Impure Functions
Lambda Functions
Currying

Temporal Dead Zone

Interview bible

Closures

Sync Vs Async JS

Localstorage Vs Sessionstorage

Cookie & Session
Lexical Environment

Execution Context

Event Loop

Promises

NOW, WHAT YOU'RE GOING TO READ ARE THE
QUESTIONS USUALLY ASKED IN THE
INTERVIEWS, THE ONLY PERSPECTIVE WE HAD

WHILE WRITING THE ANSWERS WAS,

"KEEPING THEM TO THE POINT AND
SHORT™

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

WHAT IS THE DIFFERENCE BETWEEN
LET, VAR, CONST !¢

let & cons originate from new js version esé, and var is from
older version of js, they both exist in current JavaScript and
can be used, but they behave differently, if you create a
variable with var keyword, the variable can be accesed in
whole function, let and const exists in the curly braces { },
vars are attached to window object but let and const are

not.

CAN YOU EXPLAIN DIFFERENCE BETWEEN
==AND ===

== operator is called equality operator while === operator is
called strict equality operator.
== only checks for value and doesn’t checks for type

=== checks for both value and type.

CAN YOU EXPLAIN WHAT IS HIGHER ORDER
FUNCTIONS ?

Higher Order Functions Are The Functions Which Accept A

Function In A Parameter Or Return A Function Or Both.

imp For Example : ForEach Method Always Takes Another Function Inside It,
So ForEach Is A Higher Order Function

INTERVIEW QUESTIONS

WHAT IS FIRST CLASS FUNCTIONS ?

A Language Is Said To Have First Class Functions When The
Functions In That Language Are Treated As Normal Values Or
Like Variables, You Can Save Them, You Can Pass Them As
Arguments To Another Functions.

WHAT ARE CONSTRUCTOR FUNCTIONS ?

Any Normal Function In Js Which Whenever Called With “New”
Keyword, Returns An Object, If We Use "This" Keyword Inside That
Function, It Returns An Object With All Of The Properties And
Methods Mentioned Inside That Function With This Keyword, Such
Function Is Called Constructor Function.

Bmp| function abcd()}{ =

this.name = "harsh”:

} N

constructor function

var personl = new abcd();

R_

new keyword infront of function
call makes a new blank object
and returns to the personi
variable.

INTERVIEW QUESTIONS

WHAT IS THE NEW KEYWORD, HOW YOU'LL
EXPLAIN IT ?

In JavaScript, The New Keyword Is Used To Create An
Instance Of An Object Based On A Constructor Function.
The New Keyword Creates A New Empty Object And Sets
The This Keyword To Point To The New Object.

In Order To Understand New Keyword, Do This:

Whenever You Encounter A New Keyword Always Imagine A
Blank Pair Of Curly Braces { } Which Means A Blank Object
And Now Move Inside The Function Which Is Called Just After
The New Keyword, Inside That Function All Of The This
Keyword Instances Will Add Properties And Methods Inside
Your Blank Object Created By The New Keyword.

Exmp

function abcd(){

this.name = “harsh”; put { } in place of this keyword we
K~ add name property in object

{

name: "harsh”

}

var personl = new abcd();

A }

new keyword make a blank {}

INTERVIEW QUESTIONS
WHAT IS IIFE ?

IIFE Stands For Immediately Invoked Function Expression. It Is
A Way To Create A Function And Immediately Execute It
Without Needing To Call It Later. Here's An Example:

Exmp

Normal Function

function abcd() {

// some code

lIFE
(function() {

// wrap function with () and then call it ()
PO

Y

we straightaway executed it

INTERVIEW QUESTIONS

lIFEs Are Commonly Used To Create A Private Scope For Your
Code, So That Variables And Functions Defined Inside The
[IFE Are Not Accessible From QOutside The IIFE.

Code
let globalVariable = (function() {

let privateVariable = 0;

DO j‘

this is a private variable we can
not access it outside or via
console

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS
EXPLAIN MAP, FILTER REDUCE.

Map : Suppose You Have To Perform A Particular Task On
Every Member Of The Array, Multiply Every Element Of The
Array With 2 And Then Place The Answers In The New Array
And Eventually Return That New Array, And That's Exactly
What Map Does

Exmp

var numbers = [1, 2, 3, 4, 5];
var doubledNumbers = numbers.map(function(value){

return value*2;

1) 'K

map always returns something, if
you don't return anything that
would give error.

Key Higlights

i) map looks very similar to forEach loop, but inside it there's
something always returned, and whatever is returned gets placed

in the resultant array.

INTERVIEW QUESTIONS
EXPLAIN MAP, FILTER REDUCE.

Filter : Suppose You Have An Array And You Want To Filter
Out (Not Accept) Elements In New Array, That's Where Filter
Comes In, Let's Say Array Contains Many Numbers We Want
To Extract Only Those Numbers Which Are Greater Than 5
That's Where Filter Is Used.

Exmp

var numbers = [1, 2, 3, 4, 5];
var filteredNums = numbers.filter(function(value){

return value>5;

})s 'K

filter always expects something
which returns true or false,
value>5 can either be true or false

Key Higlights

i) filter looks very similar to map, but inside it whatever it returns
should always be boolean which means true or false, if true is
returned, that particular array value is accepted in new array and

otherwise it's not.

INTERVIEW QUESTIONS
EXPLAIN MAP, FILTER REDUCE.

Reduce : Ek Array Ki Saari Value Par Kuchh Perform Karke Ek
Value Banane Ke Liye We Use Reduce, Example : Add All
Values Of Array, When We Add All Values, It Gives Us The
Sum Which Is A Single Value, Any Such Case Where We Need
To Convert Array Into A Single Value, That's Where Reduce s
Used.

Exmp

const myArray =/f1,x2; 388, 5];
const result = myArray.reduce((acc, val) => {

return acc = acc+val;

e — — — — — — — — — — — — R e e e T — — — — — — — — 4

: WHAT IS ACC? |

'~ acc 1s accumulator it contains the build up |
answer, example if we add 1,2 acc will

contain 3 and now when we add 3 on previous
~ sum acc will contain 6 which means the |

buildup answer 1s acc

b e e e e e e e e e e e e e e e o e e e s o e e e e e e e e, e e e e e e e e e e e eSS e S e s s e e s s]

INTERVIEW QUESTIONS

EXPLAIN MAP, FILTER REDUCE.

const myArray = [1, 2, 3, 4, 5];

const result = myArray.reduce((acc, val) => {

return acc = acc+val,; 4"/////
1)

P — — — e I T e B e — — — — — — 5

val is every next value of the array just

- like foreach takes every next value of

array

e e e g o1

Loop Runs For

1st Time 2nd Time 3rd Time
ace= [l - I A= [B
Last Time

o 1 1 1 1 11

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

HOW MANY WAYS TO CREATE OBJECT IN JS?

i) var object = new Object();

ii) var object = Object.create(null);

iii) var object = { name: "Sheryians", age: 7 };

iv) function Individual(username) {
this.username = username;
this.location = “Bhopal”;

}

var object = new Individual("Sheryians");

v) class Individual {
constructor(username) {

this.username = username;

}
¥

var object = new Individual("Sheryians");

INTERVIEW QUESTIONS
ACCESSING OBJECTS PROPERTIES TWO WAYS.

var obj = {

name: ‘“harsh”

i obj.name obj[‘name”’] E

b

both gives same answer

DELETE OBJECT PROPERTY

var obj = {
name: ‘“harsh”

}

deletes the property “name” of object “obj”

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS
UNDERSTANDING PROTOTYPE.
Go To Browser Console And Create An Object

var obj = {
name: ‘“Harsh”

}

& Now Type Object Name Followed With A Dot Operator :
obj.
var obj = {name: "harsh"}

obj .name we created name
EHQHEMMWMWMMWWmmmmmmmmmmmmwmﬁ
m::aggiHgag%¥ggiimmmmmmmmmmmm
__defineSetter__
__lookupGetter__
__lookupSetter__
__proto__

but we didn’t
constructor

hasOwnProperty created these
isPrototypeOf

propertyIsEnumerable

toLocaleString

toString
valueOf

so, if we didn’t created these properties where do they
come from, that’s where the concept of prototype comes
in, every created object gets a property called
prototype, which means whenever you create an object it

gets prototype property automatically

INTERVIEW QUESTIONS

UNDERSTANDING PROTOTYPE.

var obj = {name: "harsh"}

we just created obj
with name

but when we check it on console what does it contains

obj

v {name: 'harsh'}

name: "harsh”
» [[Prototype]]: Object

we didn’t created
[[prototype]]

it contains an extra property called [[prototype]]
so where does it come from and what does it

contains.

WHERE I'T CAME FROM ?

javascript by default adds a property called

[[prototype]] to every object, so if you ever see
any object, you can blindly say that object

contains prototype, so now, what does it contains °?

INTERVIEW QUESTIONS
UNDERSTANDING PROTOTYPE.
WHAT DOES IT CONTAINS ¢

[[prototype]] contains many helper properties and
methods which we can use to complete our task,
let’s say we create an array and we want to know
length of it, what do we do, we use .length
property on array, did we created .length on that
array, no! but it still contains .length, the

question is how ?

the answer 1is, many properties and methods are
already available to use built by javascript

creators inside prototype of every object.

INTERVIEW QUESTIONS

UNDERSTANDING PROTOTYPAL INHERITANCE

that’s shinchan ke papa
he’s human
he got a last name

he got round eyebrows

that’s shinchan

because shinchan is his papa’s son, he inherits
or we can say contains properties of his papa,
example, shinchan is also human, he also has
same last name, and he also gets round eyebrows.

THIS IS CALLED INHERITANCE.

BUT, WHAT ABOUT PROTOTYPAL INHERITANCE?

that’s exactly what we’re going to talk about now,
inheritance is basically passing parent’s features or
properties to their childrens, to do the same thing in
javascript with the help of prototype (one extra property
always given by javascript to every object) is called

prototypal inheritance.

INTERVIEW QUESTIONS

UNDERSTANDING PROTOTYPAL INHERITANCE

50, HOW WE PERFORM PROTOTYPAL
INHERITANCE ?

make an object called human and put properties like, canFly,
canTalk, willDie

var Human = {
name: ‘“Harsh”,
canFly: false,
canTalk: true,
willDie: true

make another object called sheryians student, he can do all
things which a human can do but he can do few more things like,
he can solve js questions and create modern websites, so we
create extra two props which normal humans can’t do in that
object and rest properties we will inherit from human.

var SheryiansStudent = {
solvelsQuestion: true,
createModerniWebsite: true

} this line does the magic

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING PROTOTYPAL INHERITANCE

W
=T
M
-
<
e
Q
=
wn
wn
—+
=
Q.
M
-
fnis
o
e
@)
=r
|O

]

o
c

=

QW

-

L]

this line adds all the properties of human in our sheryians
students object, so now sheryians student has his properties and
it also contains properties of human object, so it inherits
properties from parent object Human.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING STRICT MODE

to use strict mode, just type “use strict” at top of your code.

IN NORMAL MODE

are bro itna to chalta hai !

party jab khatam ho ghar
CERENE

baby, I am understanding,
you can talk to everyone.

technical examples

X = 12;
works perfectly.

var x = 3.14;

delete x;
no errors & doesn’t deletes

function fnc(a, a) {};
no errors.

IN STRICT MODE

sirf aise hi chalega.

10 se pahle ghar par aajana

why you’re talking to so
many girls ?

technical examples

X = 12;
gives error you should
declare it first.

var x = 3.14;

delete x;
error

"use strict";
function fnc(a, a) {};
error for same param ‘a’

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING !l DOUBLE EXCLAMATION

I'l does just one thing whatever you write after it will be
converted into it’s truthy or falsy state, for example if we

write !'!-1 it will give us true
11-1 gives true
11[1,2,5] gives true
I''{name: “harsh”} gives true
I'1”Hello Sheryians” gives true
1o gives false
I'M1null gives false
that means if you write !! infront of anything it will give you

either true or false depending on it’s truthy or falsy.

INTERVIEW QUESTIONS

UNDERSTANDING THIS KEYWORD.

this keyword is a special keyword in JavaScript which changes
it’s value in different context.

LET'S SEE "THIS” KEYWORD IN DIFFERENT
CONTEXT :

in global scope

console.log(this); gives window

in function scope

function abcd(){
console.log(this); gives window

in method scope

var obj = {
name: “harsh”,
someMethod: function(){
console.log(this); gives object obj

}

IMPORTANT

in any method, “this” keyword always refers to
parent object

INTERVIEW QUESTIONS

UNDERSTANDING THIS KEYWORD.

this keyword is a special keyword in JavaScript which changes
it’s value in different context.

LET'S SEE "THIS” KEYWORD IN DIFFERENT
CONTEXT :

in global scope

console.log(this); gives window

in function scope

function abcd(){
console.log(this); gives window

in method scope

var obj = {
name: “harsh”,
someMethod: function(){
console.log(this); gives object obj

}

IMPORTANT

in any method, “this” keyword always refers to
parent object

INTERVIEW QUESTIONS
UNDERSTANDING THIS KEYWORD.

event listeners
var button = document.querySelector(“button”);

button.addEventListener(“click”, function(){

console.log(this);

1) \

this keyword is equal to
whatever written before
addEventListener, in this
case button.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING CALL

to change function’s this value to some object of our choice we
can us call apply & bind.

make a function and check this keyword value :

function abcd(){
console.log(this)

} \
this = window

but we want to change this keyword inside function from window to
some other object,

SO we can use call :

function abcd(){
console.log(this)

}

var obj = {
name: “harsh”

abcd.call(obj)

\

when we call function abcd with .call
we can pass this keyword’s value of
our choice.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING APPLY

apply also does same thing which call does but if function takes
parameter, then apply takes function arguments in an array.

function abcd(a,b,c,d){

console.log(this)
}
var obj = {
name: “harsh”
}

abcd.apply(obj, [1,2,3,4])

H

apply takes second argument always as
array, all value in array are
arguments for the parameter of abcd
function.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING BIND

bind is very similar like call just that it doesn’t calls the
function straightaway but returns the function to call it later

whenever we want.

function abcd(){
console.log(this)

var obj = {
name: “harsh”

var newfnc = abcd.bind(obj)

.ﬁ

this newfnc variable now contains a
function which we can run in future,

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING PURE FUNCTIONS

Pure function is any function which has these 2 features :

i) it should always return same output for same input

ii) it will never change/update the value of a global variable.

PURE FUNCTION

function calc(val){
return val+2;

Al

always same answer if you pass same
value for ‘val’ argument, hence this
function is pure function.

IMPURE FUNCTION

let someval = ©;

function calc(x) {
someval++;

} \
changes a value of a global variable
called someval

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING LAMBDA FUNCTIONS

Lambda functions are the easy way & shorter way to create
functions in js.

OLDER WAY TO CREATE FUNCTIONS.

function calc(val){
return val+2;

}

LAMBDA FUNCTIONS.
() =>A{
}

you put () and then arrow and open {} that’s a lambda
function.

save it in a variable.

S

var abcd = () => {

}

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING CURRYING.

if you have a function which takes multiple arguments, we can
break down them into a series of function which takes one
arguments each.

so, what we do is, we make a function which returns another
function, and that returning function uses arguments of parent
function too, so on running parent function we get a new function,
which on run does some work with both of the arguments.

NORMAL FUNCITION

function add(val, val2){
return val+val2;

CURRYING EXAMPLE

function add(val){
return function(val2){
return val+val2;

on function call we receive

add(2) ‘/f' another function

var fnc2

this gets the ans 7 in
var ans = fnc2(5) / variable ans.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS
UNDERSTANDING TEMPORAL DEAD ZONE

in JavaScript we got new ways to create variables and constants
with the help of let and const, and they brought a new concept in
picture known as TDZ (Temporal Dead Zone).

in this concept, if you try using a variable created with let or
const keyword before declaring it, it will result into error, more
specifically reference error.

.J/— reference error, using
console.log(a); variable before declaring.

let aijs 12%

NOTE :
in previous days when we used to create variables with var keyword
there was no such error because vars don’t support TDZ, and we

used to get undefined as the answer if we ever asked for a value
of a variable before declaring it.

INTERVIEW QUESTIONS

UNDERSTANDING CLOSURES.

Everytime we have a function whcih returns another function, it
creates something called closures.

in closures, there’s a parent function which might contain some
data/variables which can be accessed/used by the child function
present inside it, parent function always return child function in
closures.

function parent(a){
var someval = a+2;
return function(b){
someval++;

\\ this returning function can
access or change parent’s
variable someval’s value.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING ASYNC VS SYNC.

Synchronous = Line By Line Execution.

Asynchronous = This Code Is Moved To Side Stack, And Its Starts Executing When
Whole Synchronous Code Is Executed And Main Stack Is Vacant.

in normal scenarios, code will execute line by line, which means
first line executes first and then second line and so on, this way
of code execution is called synchronous code execution.

but, js also supports something called asynchronous code
execution, which means some code which is asynchronous, will get
to side stack for execution and will run after all the synchronous
code is finished,

let me explain : think like we have two type of code, sync and
async, first, second & third line is sync and fourth and fifth line
is async code, now how will they get executed, first, second and
third line will move to main stack (main stack gets executed first)
and fourth and fifth line will move to side stack, and code on side
stack will wait until main stack is empty, then side stack code will
move to main stack for execution.

INTERVIEW QUESTIONS

UNDERSTANDING ASYNC VS SYNC.

Synchronous = Line By Line Execution.

Asynchronous = Type Of Code Which Doesn’t Executes Straightaway But Is Moved To
Side Stack, And Its Starts Executing When Whole Synchronous Code Is Executed
And Main Stack Is Vacant.

in normal scenarios, code will execute line by line, which means
first line executes first and then second line and so on, this way
of code execution is called synchronous code execution.

but, js also supports something called asynchronous code
execution, which means some code which is asynchronous, will get
to side stack for execution and will run after all the synchronous
code is finished,

let me explain : think like we have two type of code, sync and
async, first, second & third line is sync and fourth and fifth line
is async code, now how will they get executed, first, second and
third line will move to main stack (main stack gets executed first)
and fourth and fifth line will move to side stack, and code on side
stack will wait until main stack is empty, then side stack code will
move to main stack for execution.

INTERVIEW QUESTIONS

UNDERSTANDING LOCAL STORAGE & SESSION STORAGE

local storage, it's like a tiny backpack for websites to store
information, for example you want to save score of the game in
browser, if you refresh the browser, score remains there.

you’re playing this game on
browser, and local storage contains
data, if you refresh browser, you
don’t lose your progress

Imagine 'sessionStorage' as a temporary notepad for websites during
your visit. They write down info on it while you're on their site,
but it's tossed out and forgotten when you leave. It's like a short
memory for the site, just while you're there.

you’re using this website

Save on Mac or iPad
for college.

\ website is saving data and
details, related to usage, so
that they can remember login info

i and everything inside session
storage.

INTERVIEW QUESTIONS

UNDERSTANDING COOKIE & SESSION

Cookies: Cookies are like small tags that websites attach to your
browser. They help websites remember you even when you come back
later, they save your location and few more details like what things
you checked out on website and other type of data inside the browser
and these details are called cookies.

1st time visiting,
website save details

15 days later visiting
again, website remembers you
because of the previous
details

Session: A session is like a special memory a website has only while
you're visiting. It forgets everything once you leave, if you don’t
specify the expiration time.

INTERVIEW QUESTIONS

UNDERSTANDING LEXICAL ENVIRONMENT

Think of a lexical environment like a little bubble where your code
lives. It holds all the things your code needs, like variables and
functions, and keeps them organized. When your code runs, it looks
inside its own bubble to find what it needs.

il 2 /-\ /;*';bles
3

var b =

functions

bcd
function abcd(){ [

console.log(“hey”); \\k ¥,
[g
} : E fﬁ

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING EXECUTION CONTEXT

Each time a function is called, a new execution context is created.
It helps manage the scope of variables, keeps track of the call
stack, and ensures proper execution of the code. It's the
environment in which your code operates and performs its tasks.

it’s like a stage for code to run.

you call a function -> execution context gets created -> it
contains lexical environment of the code which means
variables, functions and other things related to it to
execute that function.

execution context

few more
things

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING EVENT LOOP

event loop is the on which checks whether the main stack is empty or
not and if it empty it takes task from side stack to main stack for

execution.

if you don’t know, main stack is executed first and
contains synchronous code.

other than that, there is one more stack called side
stack and it contains async code and waits until the
main stack gets empty.

~Q)

Event Loop, Checks If Main Stack
Is Empty And Moves Code From Side
Stack To Main Stack For
Execution.

the book by Harsh Sharma, Sheryians Coding School

INTERVIEW QUESTIONS

UNDERSTANDING PROMISES

sometimes code takes time to execute and we never know when it will
resolve, like how many seconds, minutes or maybe hours, but we want
whenever it finishes, we want to print “done”, but it’s mandatory
“done” should only be printed when the code executes, but again the
problem is we don’t how much time it will take to execute or finish,
in such cases we can use callbacks or promises.

Think of a promise like a special agreement between
your code and something that takes time, like this :

“Hey, I promise to let you know when I'm done, whether
it's good news or bad news.”

